If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+26x-7=0
a = 3; b = 26; c = -7;
Δ = b2-4ac
Δ = 262-4·3·(-7)
Δ = 760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{760}=\sqrt{4*190}=\sqrt{4}*\sqrt{190}=2\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{190}}{2*3}=\frac{-26-2\sqrt{190}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{190}}{2*3}=\frac{-26+2\sqrt{190}}{6} $
| 3.8x=2.5x+6.5 | | ∑7i=12i | | 7x+6x-8x=15 | | 6x-15x=72 | | -5.58=1.86v | | 27+n=9 | | 25n^2=65n | | -2(5-3a)=50 | | X+3×x=17 | | 5y+18-3y=30 | | -45=15w | | X+1/4=3-x+3/3 | | 9b+5/4+b+3/4=17 | | 2×1x×5=34 | | x(20-0.1(x-1))=0 | | 2x×5=34 | | y3+3y2−16y−48=0 | | 7x+8.68=3x+14 | | 10(x+7)=5(x+8)-15 | | 9t^2+4t-6.05=0 | | 500/x=3.1 | | 2x^2+4x−2=0 | | 16a+81=145 | | x+(x+47)=109 | | -7x+5=-4x-7 | | 22x-4x=15-6x | | 5y+4=3y=+6 | | 9t^2+4t-4.95=0 | | 2x=4x(3) | | 7x+8=6x-22 | | 5.9x+4.05x=695.8 | | 5×x+1-3x=9 |